If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-19x-24=0
a = 1; b = -19; c = -24;
Δ = b2-4ac
Δ = -192-4·1·(-24)
Δ = 457
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{457}}{2*1}=\frac{19-\sqrt{457}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{457}}{2*1}=\frac{19+\sqrt{457}}{2} $
| 4x+7x=-30 | | -6=-8+n/7 | | 16+20x=96 | | (6÷v)+7.9=9.1 | | 7/9+n=15/6 | | (X-3)+(x+0.5)+(x+1)=180 | | (6+1)-z=0.6 | | 22(w-934)=506 | | (X-3)+(x+1/2)+(x+1)=180 | | x^2-11x-38=0 | | 24(s+7)=768 | | (18-3x)^2=576 | | b-730/9=16 | | 43=7x+8 | | -74=-4+10r | | 19(v+4)=798 | | (3x-1)-2.75(x+2)=0 | | u/31+336=346 | | 10(x-20)=10 | | 62x+20=330 | | 13x-53+14x-40+6x+20+14x-58+5x+47=540 | | -32+6x=16 | | -67=-2-5x | | 3x=0.25 | | k-153/32=16 | | 22(y-966)=528 | | c/25+664=686 | | h/5+24=46 | | -66+7x=18 | | 25+0.45=x | | 10(x-100)=900 | | 5+2.3x=17 |